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Workflow is	a	description	of	a	(manufacturing,	
business,	…)	process

– tasks	and	relations between	them
– we	use	a	specific	nested	structure	

(obtained	by	task	decompositions)
– extra	precedence,	

synchronization,	and	causal	

constraints	can	be	added
– process is	a	subset	of	tasks	that	

satisfies	the	constraints

Background	on	Workflows
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workflow	is	obtained	by	task	decomposition

The	problem	of	selecting	a	valid	process	

containing	given	tasks	is	tractable.

However,	if	we	add	extra	constraints	then	the	

problem	becomes	NP-complete.
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Nested	Workflows
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Extra	constraints	simplify	design	of	complex	
workflows.
• Causal constraints
– define	relations	restricting	appearance	of	tasks	in	the	
process

• Precedence constraints
– defining	ordering	of	tasks	beyond	the	nested	structure

• Synchronization constraints
– define	temporal	synchronization	between	tasks	(for	
example	starting	at	the	same	time)

Extra	Constraints	in	Nested	Workflows
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Can	we	represent	nested	workflows	with	extra	

constraints	in	some	“standard”	framework?

– to	exploit	techniques	(such	as	verification	)	for	
that	framework

– to	unify	various	workflow	modeling	approaches

Can	we	represent	easily	recursion	in	the	

workflow	(task	decomposition	contains	the	top	
task	itself)?
– to	model	planning	problems,	where	the	number	
of	actions	is	unknown	in	advance

Motivation
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Attribute	grammar	is	a	context-free	grammar

S	→	A.B.C
A	→ a
A	→	a.A
B	→ b
B	→	b.B
C	→	c
C	→	c.C

Background	on	Attribute	Grammars
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Attribute	grammar	is	a context-free	grammar	where:
• extra	attributes	are	added	to	symbols

S(n)	→	A(k).B(l).C(m)
A(n) → a
A(n) →	a.A(m)
B(n) → b
B(n) →	b.B(m)
C(n) →	c
C(n) →	c.C(m)

Background	on	Attribute	Grammars
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Attribute	grammar	is	a context-free	grammar	where:
• extra	attributes	are	added	to	symbols
• constraints	connect	these	attributes

S(n)	→	A(k).B(l).C(m) [n=k=l=m]
A(n)	→ a	[n=1]
A(n)	→	a.A(m)	[n=m+1]
B(n)	→ b	[n=1]
B(n)	→	b.B(m)	[n=m+1]
C(n)	→	c [n=1]
C(n)	→	c.C(m)	[n=m+1]

Background	on	Attribute	Grammars
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How	to	get	an	attribute	grammar	equivalent	to	

the	nested	workflow	with	extra	constraints?

– equivalence:	process		~		word

Core	ideas:

• nested	structure	→ context-free	structure
• task	relations	→	attributes	and	constraints

Translating	Nested	Workflows	to	

Attribute	Grammars
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Using	start	and	end	time	attributes	for	tasks
Parallel	decomposition	(a	single	rule)

Ti(Si,Ei)	→	Ti1(Si1,Ei1)...Tik(Sik,Eik)
[Si =	min{Si1,...,Sik},	Ei =	max{Ei1,...,Eik}]	

Serial	decomposition	(a	single	rule)
a	special	form	of	parallel	decomposition	with	extra	
precedence	constraints	[Ei ≤ Si+1 ]

Alternative	decomposition	(a	set	of	rules)
Ti	(Si,Ei)	→	Tij (Sij ,Eij ) [Si =	Sij ,Ei =	Eij ]

Translating	the	Nested	Structure
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All	extra	constraints	are	binary	(between	Ti and	Tj)
Two	possible	situations:

Add	attribute	(M)	to	each	symbol	on	the	path	
between	Ti and	Tj.

Translating	Extra	Constraints
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Assume	constraint	Ti ó Tj
Grammar	rules:

Tj(...,M)→	...,A(...,M),... [M=1]
X(...,M)→... [M=0]
D(...,M)	→	...,Ti,... [M=1]

Translating	Extra	Constraints	(1)
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Tj(...,M)→	...,A(...,M),... M=1 M=1 M	≤	Sj M	=	Sj M	=	Ej
X(...,M)→... M=0 M=1 --- --- ---
D(...,M)	→	...,Ti,... M=1 M=0 Ei ≤	M M	=	Si M	=	Si
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Translating	Extra	Constraints	(2)
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Grammar	rules:
Parallel	decomposition	of	A:
A	→	...,B(...,M),...,C(...,M),...	[]

Alternative	decomposition	of	A:
A	→	B(...,M) [M=0]
A	→	C(...,M) [M=0]

X(...,M)	→	...	 [M=0]
Y(...,M)	→	...	 [M=0]

D(...,M)	→	...,Tii,...	 [M=1]
E(...,M)	→	...,Tj,...	 [M=1]

Assume	constraint
Ti ó Tj
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We	can	represent	nested	workflows	with	extra	

constraints	using	attribute	grammars.

Can	we	verify	the	workflow/planning	domain	

model	represented	as	an	attribute	grammar?

–What	does	it	mean	to	verify	the	attribute	
grammar?

– How	can	we	realize	the	verification	algorithm	in	
the	case	of	recursive	grammars?

Next	steps
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Where	is	the	bug	in	the	following	grammar?

S(NS)	→	A(NA).B(NB) [NS	=	NA,NS	=	NB]	
A(N)	→	a [N	=	1]	
A(N)	→	a.a [N	=	2]	
B(N)	→	b.b [N	=	2]

The	attribute	grammar	verification	problem	
consists	of	detecting	non-terminals	and	rules	
that	cannot	be	used	in	any	successful	derivation.

Attribute	Grammar	Verification	Problem

A(N)	→	a [N	=	1]	

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták

Attribute	grammar	verification	is	similar	to	
reduction	of	a	context-free	grammar.

1. translate	the	attribute	grammar	to	a	CFG	by	
grounding	all	attributes

2. reduce	CFG

Verification	via	Translation	to	CFG

original grounded generating

non-terminals

reachable

non-terminals

S(NS) → A(NA).B(NB)
[NS = NA,NS = NB] 

A(N) → a [N = 1] 
A(N) → a.a [N = 2] 
B(N) → b.b [N = 2]

S1 → A1.B1
S2 → A2.B2
A1 → a 
A2 → a.a
B2 → b.b

S2 → A2.B2
A1 → a 
A2 → a.a
B2 → b.b

S2 → A2.B2

A2 → a.a
B2 → b.b
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Simulate	the	reduction	algorithm	on	the	
attribute	grammar	and	calculate	possible	values	
of	attributes	by	solving	underlying	CSPs.

S(NS)	→	A(NA).B(NB)[NS	=	NA,NS	=	NB]	
A(N)	→	a [N	=	1]	
A(N)	→	a.a [N	=	2]	
B(N)	→	b.b [N	=	2]

Direct	Verification	via	CSP

Bottom-up

S
A
B

Top-down

S
A
B2
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Editor	of	attribute	grammars	with	linear	constraints.
Push-button	verification	with	highlighting	all	errors	in	the	
grammar.	

Implementation
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We	can	translate	nested	workflows	with	extra	

constraints	to	attribute	grammars.

We	can	translate	STRIPS	planning	domain	models	to	
attribute	grammars.
We	can	fully	verify	the	attribute	grammars:

• by	translation	to	a	CFG

• directly	by	solving	underlying	CSPs

The	downside:
• verification	is	computationally	demanding

Summary
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• translation	of	other	models	(such	as	
hierarchical	task	networks)

• automated	learning	of	grammars	(from	
example	plans/schedules)

• visualization	and	support	for	interactive	
editing

This	is	just	the	beginning…
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