
Modelling	and	Verifying

Recursive	Workflow	Models

using	Attribute	Grammars		

Roman Barták
Charles University in Prague, Czech Republic

Workflow is	a	description	of	a	(manufacturing,	
business,	…)	process

– tasks	and	relations between	them
– we	use	a	specific	nested	structure	

(obtained	by	task	decompositions)
– extra	precedence,	

synchronization,	and	causal	

constraints	can	be	added
– process is	a	subset	of	tasks	that	

satisfies	the	constraints

Background	on	Workflows

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták



workflow	is	obtained	by	task	decomposition

The	problem	of	selecting	a	valid	process	

containing	given	tasks	is	tractable.

However,	if	we	add	extra	constraints	then	the	

problem	becomes	NP-complete.

PAR PAR
ALT ALT

Nested	Workflows

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták

Extra	constraints	simplify	design	of	complex	
workflows.
• Causal constraints
– define	relations	restricting	appearance	of	tasks	in	the	
process

• Precedence constraints
– defining	ordering	of	tasks	beyond	the	nested	structure

• Synchronization constraints
– define	temporal	synchronization	between	tasks	(for	
example	starting	at	the	same	time)

Extra	Constraints	in	Nested	Workflows

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták



Can	we	represent	nested	workflows	with	extra	

constraints	in	some	“standard”	framework?

– to	exploit	techniques	(such	as	verification	)	for	
that	framework

– to	unify	various	workflow	modeling	approaches

Can	we	represent	easily	recursion	in	the	

workflow	(task	decomposition	contains	the	top	
task	itself)?
– to	model	planning	problems,	where	the	number	
of	actions	is	unknown	in	advance

Motivation

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták

Attribute	grammar	is	a	context-free	grammar

S	→	A.B.C
A	→ a
A	→	a.A
B	→ b
B	→	b.B
C	→	c
C	→	c.C

Background	on	Attribute	Grammars

a
+
b
+
c
+

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták



Attribute	grammar	is	a context-free	grammar	where:
• extra	attributes	are	added	to	symbols

S(n)	→	A(k).B(l).C(m)
A(n) → a
A(n) →	a.A(m)
B(n) → b
B(n) →	b.B(m)
C(n) →	c
C(n) →	c.C(m)

Background	on	Attribute	Grammars

a
+
b
+
c
+

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták

Attribute	grammar	is	a context-free	grammar	where:
• extra	attributes	are	added	to	symbols
• constraints	connect	these	attributes

S(n)	→	A(k).B(l).C(m) [n=k=l=m]
A(n)	→ a	[n=1]
A(n)	→	a.A(m)	[n=m+1]
B(n)	→ b	[n=1]
B(n)	→	b.B(m)	[n=m+1]
C(n)	→	c [n=1]
C(n)	→	c.C(m)	[n=m+1]

Background	on	Attribute	Grammars

a
n
b
n
c
n

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták



How	to	get	an	attribute	grammar	equivalent	to	

the	nested	workflow	with	extra	constraints?

– equivalence:	process		~		word

Core	ideas:

• nested	structure	→ context-free	structure
• task	relations	→	attributes	and	constraints

Translating	Nested	Workflows	to	

Attribute	Grammars

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták

Using	start	and	end	time	attributes	for	tasks
Parallel	decomposition	(a	single	rule)

Ti(Si,Ei)	→	Ti1(Si1,Ei1)...Tik(Sik,Eik)
[Si =	min{Si1,...,Sik},	Ei =	max{Ei1,...,Eik}]	

Serial	decomposition	(a	single	rule)
a	special	form	of	parallel	decomposition	with	extra	
precedence	constraints	[Ei ≤ Si+1 ]

Alternative	decomposition	(a	set	of	rules)
Ti	(Si,Ei)	→	Tij (Sij ,Eij ) [Si =	Sij ,Ei =	Eij ]

Translating	the	Nested	Structure

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták



All	extra	constraints	are	binary	(between	Ti and	Tj)
Two	possible	situations:

Add	attribute	(M)	to	each	symbol	on	the	path	
between	Ti and	Tj.

Translating	Extra	Constraints

A"

Ti" Tj"

X" Y"
B" C"

D" E"Alterna2ve"
rules"

Ti"

X"

D"

Tj"

A"

Alterna2ve"
rules"

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták

Assume	constraint	Ti ó Tj
Grammar	rules:

Tj(...,M)→	...,A(...,M),... [M=1]
X(...,M)→... [M=0]
D(...,M)	→	...,Ti,... [M=1]

Translating	Extra	Constraints	(1)

A"

Ti" Tj"

X" Y"
B" C"

D" E"Alterna2ve"
rules"

Ti"

X"

D"

Tj"

A"

Alterna2ve"
rules"

T
j
=>	T

i
T
i
mutex T

j
T
i
→	T

j
T
i
ss T

j
T
i
se	T

j

Tj(...,M)→	...,A(...,M),... M=1 M=1 M	≤	Sj M	=	Sj M	=	Ej
X(...,M)→... M=0 M=1 --- --- ---
D(...,M)	→	...,Ti,... M=1 M=0 Ei ≤	M M	=	Si M	=	Si

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták



Translating	Extra	Constraints	(2)

A"

Ti" Tj"

X" Y"
B" C"

D" E"Alterna2ve"
rules"

Ti"

X"

D"

Tj"

A"

Alterna2ve"
rules"

Grammar	rules:
Parallel	decomposition	of	A:
A	→	...,B(...,M),...,C(...,M),...	[]

Alternative	decomposition	of	A:
A	→	B(...,M) [M=0]
A	→	C(...,M) [M=0]

X(...,M)	→	...	 [M=0]
Y(...,M)	→	...	 [M=0]

D(...,M)	→	...,Tii,...	 [M=1]
E(...,M)	→	...,Tj,...	 [M=1]

Assume	constraint
Ti ó Tj

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták

We	can	represent	nested	workflows	with	extra	

constraints	using	attribute	grammars.

Can	we	verify	the	workflow/planning	domain	

model	represented	as	an	attribute	grammar?

–What	does	it	mean	to	verify	the	attribute	
grammar?

– How	can	we	realize	the	verification	algorithm	in	
the	case	of	recursive	grammars?

Next	steps

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták



Where	is	the	bug	in	the	following	grammar?

S(NS)	→	A(NA).B(NB) [NS	=	NA,NS	=	NB]	
A(N)	→	a [N	=	1]	
A(N)	→	a.a [N	=	2]	
B(N)	→	b.b [N	=	2]

The	attribute	grammar	verification	problem	
consists	of	detecting	non-terminals	and	rules	
that	cannot	be	used	in	any	successful	derivation.

Attribute	Grammar	Verification	Problem

A(N)	→	a [N	=	1]	

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták

Attribute	grammar	verification	is	similar	to	
reduction	of	a	context-free	grammar.

1. translate	the	attribute	grammar	to	a	CFG	by	
grounding	all	attributes

2. reduce	CFG

Verification	via	Translation	to	CFG

original grounded generating

non-terminals

reachable

non-terminals

S(NS) → A(NA).B(NB)
[NS = NA,NS = NB] 

A(N) → a [N = 1] 
A(N) → a.a [N = 2] 
B(N) → b.b [N = 2]

S1 → A1.B1
S2 → A2.B2
A1 → a 
A2 → a.a
B2 → b.b

S2 → A2.B2
A1 → a 
A2 → a.a
B2 → b.b

S2 → A2.B2

A2 → a.a
B2 → b.b

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták



Simulate	the	reduction	algorithm	on	the	
attribute	grammar	and	calculate	possible	values	
of	attributes	by	solving	underlying	CSPs.

S(NS)	→	A(NA).B(NB)[NS	=	NA,NS	=	NB]	
A(N)	→	a [N	=	1]	
A(N)	→	a.a [N	=	2]	
B(N)	→	b.b [N	=	2]

Direct	Verification	via	CSP

Bottom-up

S
A
B

Top-down

S
A
B2

2
1,	2

2
2
2

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták

Editor	of	attribute	grammars	with	linear	constraints.
Push-button	verification	with	highlighting	all	errors	in	the	
grammar.	

Implementation

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták



We	can	translate	nested	workflows	with	extra	

constraints	to	attribute	grammars.

We	can	translate	STRIPS	planning	domain	models	to	
attribute	grammars.
We	can	fully	verify	the	attribute	grammars:

• by	translation	to	a	CFG

• directly	by	solving	underlying	CSPs

The	downside:
• verification	is	computationally	demanding

Summary

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták

• translation	of	other	models	(such	as	
hierarchical	task	networks)

• automated	learning	of	grammars	(from	
example	plans/schedules)

• visualization	and	support	for	interactive	
editing

This	is	just	the	beginning…

Workflow	Modeling	and	Verification	using	Attribute	Grammars Roman	Barták



Roman Barták
Charles University, Faculty of Mathematics and Physics

bartak@ktiml.mff.cuni.cz


